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Abstract
Understanding how human infrastructure and other landscape attributes affect genetic 
differentiation in animals is an important step for identifying and maintaining dispersal 
corridors for these species. We built upon recent advances in the field of landscape ge-
netics by using an individual-based and multiscale approach to predict landscape-level 
genetic connectivity for grizzly bears (Ursus arctos) across ~100,000 km2 in Canada's
southern Rocky Mountains. We used a genetic dataset with 1156 unique individu-
als genotyped at nine microsatellite loci to identify landscape characteristics that in-
fluence grizzly bear gene flow at multiple spatial scales and map predicted genetic 
connectivity through a matrix of rugged terrain, large protected areas, highways and 
a growing human footprint. Our corridor-based modelling approach used a machine 
learning algorithm that objectively parameterized landscape resistance, incorporated 
spatial cross validation and variable selection and explicitly accounted for isolation by 
distance. This approach avoided overfitting, discarded variables that did not improve 
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1  |  INTRODUC TION

Connectivity is a fundamental concept in ecology in which landscape 
structure and species movements interact to influence spatial popu-
lation dynamics and species distributions (Moilanen & Hanski, 2001; 
Taylor et al., 1993). Genetic connectivity that promotes species per-
sistence requires sufficient gene flow to maintain genetic diversity 
as well as avoid harmful effects of local inbreeding and potential 
spread of disadvantageous alleles across a species' range (adaptive 
connectivity; Lowe & Allendorf,  2010, Fitzpatrick & Reid,  2019). 
Understanding how landscape configuration and composition affect 
gene flow and genetic differentiation is key to informing effective 
conservation and management decisions for plants and animals in 
fragmented landscapes (Keyghobadi, 2007).

The field of landscape genetics attempts to characterize 
whether and to what degree environmental factors influence ge-
netic connectivity (Manel et al.,  2003). Most landscape genetics 
analyses model genetic (dis)similarity between individuals or pop-
ulations as a function of effective distances (e.g. least-cost path or 
resistance distances; Manel & Holderegger, 2013) between the spa-
tial locations associated with those same individuals or populations. 
Improvements in the fit of resistance models using isolation by resis-
tance, or some other measure of landscape structure (McRae, 2006), 
compared to those with geographic distance alone (i.e. isolation by 
distance; Wright, 1943), provide evidence that landscape character-
istics influence genetic structure.

Recent work indicates that considering multiple spatial scales in 
landscape genetics approaches provides a more comprehensive un-
derstanding of how landscape factors contribute to genetic differen-
tiation, especially for highly mobile species (Balkenhol et al.,  2020). 
Many terrestrial mammals typically disperse relatively short distances 
and rarely undergo long-distance dispersal (Whitmee & Orme, 2013) 
and understanding how these dispersal patterns influence genetic con-
nectivity is a major focus of landscape ecology and landscape genetics. 
Most landscape genetic studies consider only the largest spatial scale 
of their data, perhaps limiting their ability to distinguish between pro-
cesses that occur at different scales, such as genetic exchange within 
home ranges or long-distance dispersal events. Therefore, analyses 

that only consider one spatial scale may not capture the scale depen-
dence of ecological processes contributing to genetic differentiation.

Another major focus of landscape genetics research is modelling 
the degree to which human development has affected genetic con-
nectivity and understanding whether any additional landscape re-
sistance from this development is biologically significant and worth 
mitigating (e.g. Ernest et al., 2014; Thatte et al., 2020). Genetic con-
nectivity maps produced from these models can highlight corridors 
that may have supported gene flow across a much longer timescale 
(i.e. generations) than those from movement-based connectivity 
maps and should correlate with factors that increase survival and 
maximize fitness (Landguth et al., 2010; Zeller et al., 2017).

Researchers typically parameterize landscape genetics models 
using resistance values, which represent the degree to which a land-
scape facilitates or impedes movement (Spear et al., 2010). Modelling 
approaches that quantify the relative influence of landscape factors on 
genetic structure often include the creation of resistance surfaces for 
environmental attributes that are based on expert opinion or spatial 
predictions from habitat suitability models (Zeller et al., 2012). Because 
organisms are simultaneously influenced by multiple landscape attri-
butes that are not fully independent of one another, Peterman and 
Pope (2021) argued that effective distances should therefore be es-
timated from a single resistance surface that encompasses multiple 
landscape and environmental characteristics affecting gene flow.

Landscape genetics literature provides many different ap-
proaches for parameterizing these predictor variables, transform-
ing them to resistance values and validating models, but there is 
little consensus on which of these approaches is most appropriate 
(Vanhove & Launey,  2023). In addition, there may not be existing 
knowledge on how certain variables, alone or in combination, in-
fluence genetic connectivity. The process of selecting a suite of 
landscape predictors and determining how to transform and com-
bine them into a single resistance surface from which to estimate 
effective distances can therefore result in many different possible 
outcomes. Furthermore, models that are not validated using either 
within-sample or external data may be highly predictive for a spe-
cific dataset but are not transferrable to other landscapes (Peterman 
& Pope, 2021) or teach us little about general limits to connectivity.

model performance across withheld test datasets and spatial predictive capacity com-
pared to random cross-validation. We found that across all spatial scales, geographic 
distance explained more variation in genetic differentiation in grizzly bears than land-
scape variables. Human footprint inhibited connectivity across all spatial scales, while 
open canopies inhibited connectivity at the broadest spatial scale. Our results high-
light the negative effect of human footprint on genetic connectivity, provide strong 
evidence for using spatial cross-validation in landscape genetics analyses and show 
that multiscale analyses provide additional information on how landscape variables 
affect genetic differentiation.
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Another major confounding factor in landscape genetics studies 
is spatial autocorrelation, which occurs when nearby samples are ge-
netically more similar than samples separated by greater geographical 
distances (Legendre, 1993; Meirmans, 2012). Spatial autocorrelation 
can lead to biased predictions and incorrect inference, especially in 
heterogeneous landscapes and across large spatial extents (Ploton 
et al., 2020). Spatial autocorrelation is especially ubiquitous in models 
for wide-ranging species relating pairwise measures of genetic dis-
tances and environmental data, as each spatial location associated with 
a genetic sample occurs many times within input datasets (N genetic 
samples become (N * (N – 1))/2 pairwise observations; Franckowiak 
et al., 2017). Landscape genetics studies have attempted to account for 
spatial autocorrelation in regressions in various ways, such as including 
geographic distances between pairwise sampling locations (e.g. and/
or a kernel density estimate of sample locations as model variables; 
Bishop et al., 2021; Pless et al., 2021), or some form of clustering by 
pairwise geographic distances (Bouyer et al., 2015; Jaffé et al., 2019). 
Other approaches, such as maximum-likelihood population effects 
(MLPE), address the non-independence inherent in pairwise distances 
(genetic, geographic and effective) by using random effects terms for 
both populations (or both individuals) in each link (Clarke et al., 2002), 
but do not explicitly account for spatial autocorrelation.

In ecological modelling, spatial cross validation (CV) has gained 
attention as an important tool that helps account for spatial auto-
correlation, allowing practitioners to more reliably evaluate model 
performance and estimate variable importance (Meyer et al.,  2019; 
Ploton et al., 2020). However, spatial CV has not been used in land-
scape genetics analyses. Cross-validation procedures generally parti-
tion a dataset into subsets, fit the model using all but one subset (i.e. 
training data) and validate the model on the remaining subset (i.e. test 
data). In spatial CV (‘spatial blocking’), these training and test partitions 
can be stratified by sample location or the proximity to other samples 
(Roberts et al., 2017), a process that can reduce spatial dependence 
and overly optimistic error estimates in model results and increase 
predictive performance when extrapolating to areas with little or no 
data (Meyer et al., 2019; Whalen et al., 2022). In analysis based on 
pairwise distances, spatial CV should cluster observations by account-
ing for both the start and end locations of each location pair.

A machine learning algorithm paired with spatial CV is an example 
of a modelling approach that explicitly addresses the two main issues 
mentioned above: objectively estimating landscape resistance and 
accounting for spatial autocorrelation. Machine learning models im-
prove upon existing approaches that objectively estimate landscape 
resistance because they can accommodate highly correlated predictor 
variables and effectively capture variable interactions and complex non-
linear relationships. One of these existing approaches models genetic 
distances between pairwise observations directly from raw (untrans-
formed) landscape data that are summarized (e.g. mean) along straight 
lines between location pairs, and predictions from these models pro-
duce a resistance layer that encapsulates the combined effects of in-
dividual predictors on genetic differentiation (van Strien et al., 2012). 
In this corridor-based approach, researchers use the resistance surface 
to calculate least-cost paths between origin and destination locations, 

refit the model and repeat the entire process (optimize) until the model 
performance (measured by root-mean-squared error or a similar metric) 
no longer improves. Bouyer et al. (2015) applied this iterative optimiza-
tion in a maximum-likelihood framework, and recent studies modified 
this approach to use machine learning models (Bishop et al., 2021; Pless 
et al., 2021). Vanhove and Launey (2023) used simulations to evaluate 
the performance of several landscape genetics approaches for creating 
resistance surfaces and found that this machine learning corridor-based 
approach outperformed MLPE models in multivariate scenarios, more 
closely matching the expected contribution of individual raster surfaces 
to the final multivariate resistance surface than MLPE. By also including 
spatial CV, a process that is easily integrated into machine learning al-
gorithms using R packages such as ‘caret’ (Kuhn, 2008) and ‘tidymodels’ 
(Kuhn & Wickham, 2020), researchers using any of these approaches to 
create resistance surfaces can account for spatial autocorrelation and 
improve reliability of spatial predictions.

Grizzly bears are a flagship species for conservation efforts 
throughout much of their range, and maintaining their genetic connec-
tivity to sustain viable populations is a major conservation challenge 
(Lamb et al.,  2020). In south-east British Columbia (BC) and south-
west Alberta (AB), grizzly bear populations are isolated by highways 
and other forms of human development, which can increase mortality 
risk and impede genetic and demographic connectivity between areas 
(e.g. Proctor et al., 2005; Sawaya et al., 2014). Previous research from 
this area found that grizzly bears living in some human-dominated 
landscapes rely on connectivity corridors that allow immigration from 
nearby wilderness areas to offset human-caused mortality and sus-
tain viable populations (Lamb et al.,  2020). Within our study area, 
past studies' estimates of average home range sizes for adult grizzly 
bears were ~200–500 km2 for females and ~1000–1400 km2 for males
(Graham & Stenhouse, 2014; Herrero, 2005), while the maximum re-
corded dispersal distance is 175 km (Proctor et al., 2004).

Existing studies on grizzly bear connectivity have mostly relied on 
habitat selection models fit GPS collar tracking data (but see Proctor 
et al., 2012). However, connectivity predictions from these studies 
may not reflect genetic connectivity, as habitat selection and gene 
flow occur at different spatiotemporal scales and may be influenced 
by different underlying processes (Roffler et al., 2016). Compared to 
GPS telemetry data, genetic data have the advantage of accounting 
for successful reproduction over generations, and using individual-
level rather than population-level genetic data may increase statisti-
cal power to identify relationships between landscape variables and 
connectivity (Kierepka & Latch, 2015; Landguth et al., 2010).

Here, we predicted landscape-level genetic connectivity for griz-
zly bears (Ursus arctos) in Canada's southern Rocky Mountains, build-
ing upon the recent advances in the corridor-based method made 
by Pless et al. (2021) in four ways: first, we used an individual-based 
approach; second, we incorporated spatial CV; third, we employed 
variable (feature) selection; and fourth, we conducted the modelling 
at multiple spatial scales, each with a different maximum pairwise 
geographic distance. We sought to identify landscape characteristics 
that limited their genetic connectivity at each scale and to produce 
continuous wall-to-wall predictive maps of connectivity. Mapping 
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grizzly bear genetic connectivity in this area may help inform ongoing 
efforts to identify and prioritize mitigation and maintain movement 
corridors that promote genetic connectivity across subpopulations. 
We compiled a genetic dataset encompassing over 1000 individuals 
from across nearly 100,000 km2, and predicted that across all spatial 
scales, landscape characteristics would explain more variation in ge-
netic distances than isolation by distance (IBD) alone. Specifically, we 
tested support for four competing hypotheses of which fundamental 
factors limit grizzly bear connectivity in our study area: lack of hiding 
cover, low forage quality, increased ruggedness and natural barriers 
and increased disturbance. We represented each hypothesis in our 
models by using one or more environmental predictor variables, as 
described below in Methods. Our models also allowed for all two-way 
interactions between these variables. We predicted that relatively 
undeveloped river valleys within mountainous areas would have the 
highest genetic connectivity (Proctor et al., 2015), as they provide 
dispersal corridors that minimize energy expenditure (Carnahan 
et al., 2021) and maximize safety due to low risk from people.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

We modelled connectivity using microsatellite genotype data from 
grizzly bears across ~100,000 km2 of south-eastern BC and south-
western AB, including a large portion of the southern Canadian 

Rocky Mountains (Figure  1). The area encompassed several large 
protected areas, including Banff, Glacier, Kootenay, Waterton and 
Yoho National Parks, along with several provincial parks. Mountains 
were heavily glaciated in the north-west but less so farther south. 
The Rocky Mountain Trench, a deep low-elevation linear valley with 
human settlements and major roads, ran roughly north–south along 
the western edge of the study area. The region was characterized 
by pronounced temperature and precipitation gradients that were 
highly correlated with elevation. Mountainous areas were charac-
terized by long, cold winters and relatively short summers, and most 
precipitation occurred in the spring. Forested foothills on the east-
ern slopes of the mountains gave way to relatively flat, drier areas 
with aspen parklands, prairies and croplands. A handful of major 
highways crossed the region, primarily not only along valley bottoms 
but also across several high mountain passes. Human development 
was largely confined to valley bottoms and was denser east of the 
Rocky Mountains.

2.2  |  Microsatellite data

Genetic samples were collected from 1992 to 2019 (median year: 
2012), primarily using hair snares as part of genetic tagging pro-
jects to estimate demographic and genetic parameters (Lamb 
et al.,  2019; Morehouse & Boyce,  2016; Proctor et al.,  2010; 
Sawaya et al., 2012, 2014), but additional samples were collected 
during live captures or from dead bears (Whittington et al., 2018). 

F I G U R E  1  Study area and locations 
of 1161 grizzly bear genetic samples in 
south-east British Columbia and south-
west Alberta, Canada. Darker colours 
indicate overlapping sample locations.
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All microsatellite data were processed at Wildlife Genetics 
International, a commercial genetics lab in Nelson, BC, Canada. 
Samples were genotyped at a minimum of 9 or 15 microsatellite 
loci (see Paetkau, 2003 and Morehouse & Boyce, 2016 for details 
on DNA extraction, error checking, identification of individuals 
and data filtering). We conducted exploratory analyses compar-
ing results using 9 versus 15 loci (Figure S1) and proceeded with 
data from bears genotyped at 9 loci (CXX110, G1A, G1D, G10B, 
G10H, G10J, G10M, G10P and MU50; Kendall et al., 2009). This 
allowed us to use data from 1161 unique grizzly bears (vs. 374 
unique bears genotyped at 15 loci). For bears where we had GPS 
collar data (n = 78), we used the closest location to the centroid of 
GPS locations for that bear to best approximate each bear's home 
range centre. Similarly, in cases with >2 genetic samples, we use 
the sample location closest to the centroid of the genetic samples. 
We used the sample location with the earliest date when there 
were only two genetic samples per individual. We calculated ge-
netic distances between all 673,380 pairwise combinations using 1 
– proportion of shared alleles (Bowcock et al., 1994) and Euclidean
genetic distance (Excoffier et al.,  1992) in the ‘gstudio’ R pack-
age (Dyer,  2012). We chose these metrics because they do not
assume Hardy–Weinberg equilibrium and they performed well in
a formal comparison of individual-based genetic distances (Shirk
et al.,  2017). The correlation between the two metrics was .92.
We conducted a principal components analysis (PCA) and used the 
first principal component of these two genetic distances as the re-
sponse variable in all models. A PCA transforms many correlated
variables into fewer uncorrelated variables with minimal informa-
tion loss. The correlation between the PCA of genetic distances
and both independent distances was .98.

We also calculated a suite of genetic diversity indices for grizzly 
bears across all nine loci and the entire study area. First, we gen-
erated a genotype accumulation curve with R package ‘poppr’, ver-
sion 2.9.3 (Kamvar et al., 2014), to confirm that our microsatellite 
panel had the power to identify all the individuals in our sample. 
This method determines the minimum number of microsatellite loci 
needed to discriminate among 99% of unique bear genotypes given 
a random sample of loci. To further confirm our power to iden-
tify individual bears from genotypes, we calculated the probabil-
ity of identity between siblings using the ‘popGenUtils’ R package 
(Stourvas,  2022). We assessed deviations from Hardy–Weinberg 
equilibrium using exact tests, using 1000 Monte Carlo permuta-
tions, across all loci using the ‘pegas’ R package (Paradis,  2010), 
and deviations from linkage disequilibrium (or non-independence 
of alleles at each locus) using the index of association in the ‘poppr’ 
R package.

2.3  |  Environmental data

We used environmental variables that we hypothesized might ex-
plain variation in movement and habitat selection of grizzly bears 

as predictor variables in our model based on past grizzly bear stud-
ies in the region (e.g. McClelland et al., 2020; Nielsen et al., 2009; 
Proctor et al.,  2015; Roever et al.,  2010). We had four competing 
hypotheses for which landscape factors would best explain gene 
flow in our models, each represented by at least one environmental 
variable (Table  1). Canopy cover represented the hiding cover hy-
pothesis and summer precipitation and enhanced vegetation index 
(EVI; Huete et al.,  2002) represented the forage quality hypothe-
sis. We chose EVI over the normalized difference vegetation index 
because it is more sensitive in areas with dense vegetation and ac-
counts for canopy background noise. Terrain ruggedness index (TRI) 
and glacier cover represented ruggedness and natural barriers, and 
two layers of human disturbance represented disturbance and mor-
tality risk. We used 30-m-resolution canopy cover data from the 
Global Forest Cover Change Tree Cover Multi-Year Global dataset 
(Townshend, 2016).

We tested three different layers for human disturbance: a 
‘built environment’ layer for year 2015 (see details below), a 
300-m-resolution Canada-specific human footprint index layer for
year 2016 (Hirsh-Pearson et al., 2022) and a layer with only paved
roads using government data from 2022 (Government of British
Columbia, 2017; Government of Canada, 2022). The built environ-
ment layer represented the footprints of roads, towns, buildings and
mines. To create this layer, we took the ‘urban’ category from the
30-m-resolution North American Land Cover Change Monitoring
System's 2015 land cover layer (NALCMS 2020) and manually added
large mine footprints from Landsat imagery from 2012, which was
the median year of our genetic samples.

We calculated TRI (Riley et al.,  1999) with a 9-pixel window 
size using 30-m-resolution elevation data from NASA's Shuttle 
Radar Topography Mission (Farr et al.,  2007), and calculated av-
erage summer EVI for 2013–2016 in Google Earth Engine using 
data from 30-m-resolution Landsat 8 Tier 1 8-day EVI composite 
(Roy et al.,  2014). We used the snow and ice category from the 
30-m-resolution North American Land Cover Change Monitoring
System's 2015 land cover layer to represent glacier cover. We used
bilinear resampling to convert all continuous raster data to 180 m
resolution, and nearest neighbour resampling for the binary built en-
vironment, paved roads and glacier layers.

2.3.1  |  Spatial genetic diversity indices

Prior to analyses, we created a Mantel spatial correlogram of genetic 
distances between all pairs of grizzly bears in our study area, which 
showed positive autocorrelation in spatial genetic structure up to an 
interpolated distance of ~120 km, beyond which genetic distances 
were negatively autocorrelated (Figure S2). We then estimated al-
lelic richness, inbreeding coefficient (fixation index) and the effec-
tive number of breeding individuals across the study area in the sGD 
package (Shirk & Cushman, 2011) using 120 km as the spatial genetic 
neighbourhood.
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2.4  |  Landscape genetics analysis

2.4.1  |  Multiscale datasets

The clear transition from positive to negative spatial autocorrelation 
in genetic distances (Figure S2) suggested there were multiscale ef-
fects in grizzly bear genetic structure throughout our study area. 
After creating all pairwise combinations of genetic locations, we cre-
ated six separate analysis datasets that covered a gradient of spatial 
scales, each with a different maximum pairwise geographic distance 
(40, 80, 120, 200, 300 and 440 km).

2.4.2  |  Corridor-based modelling approach

We extracted the mean value along buffered straight lines between 
all pairwise locations for each of the six environmental variables in 
our models using the ‘exactextractr’ R package (Baston, 2021). We 
chose the mean value, as in Pless et al.  (2021) and Vanhove and 
Launey (2023), rather than the median (Bishop et al., 2021) because 
it was more sensitive for capturing intersections with roads and built 
environments, which were relatively rare throughout our study area. 
We tested buffer widths of 0, 1, 3 and 5 km along straight lines and 
least-cost paths (LCPs; see below for details) to determine their ef-
fect on the resulting mean covariate values. Both Pless et al. (2021) 
and Bishop et al.  (2021) used a 1 km raster resolution with no 
buffer. Next, we ran gradient boosting trees (GBM; ‘gbm’ R pack-
age; Greenwell et al., 2020) and random forest (RF) models (‘ranger’ 
R package; Wright & Ziegler, 2017) using the covariates extracted 
from these straight lines as explanatory variables and genetic dis-
tance as the response variable. We included geographic distance in 
all models, which allowed us to predict its relative influence in final 

models and helped prevent selection of false-positive variables in 
the spatial CV and variable selection process described below (Row 
et al., 2017), and we neutralized the effect of geographic distance 
when mapping results from our top models by using a constant value 
(median pairwise geographic distance across all pairwise locations). 
These maps served as initial composite landscape resistance sur-
faces from which we calculated LCPs between all pairwise genetic 
sample locations.

2.4.3  |  Spatial cross-validation

We added to Pless et al.'s (2021) machine learning, corridor-based 
approach by incorporating both spatial CV and variable selection 
into the modelling process (Figure  2). As part of the straight-line 
model, we employed spatial cross-validation coupled with a for-
ward variable selection algorithm in ‘CAST’ (Meyer et al., 2023) and 
‘caret’ R packages to remove uninformative variables and minimize 
overfitting. Prior to modelling, we created 10 spatial clusters of all 
1161 sampling locations (Figure S3) using the ‘kmeans’ function in 
R, which uses the algorithm of Hartigan and Wong (1979) to parti-
tion the locations in a way that minimizes the sum of squares from 
the locations to the centroid of their assigned cluster. We used 
these 10 spatial clusters to create CV folds. For each fold, we itera-
tively trained models using all pairwise observations except those 
where either the start or end location corresponded to a location 
from that fold (spatial cluster). Pairwise paths (either straight lines 
or LCPs) therefore appeared in multiple test (withheld) datasets in 
the cross-validation procedure. We compared results from models 
using spatial CV to those using random CV, where we randomly as-
signed each pairwise observation to 1 of 10 test datasets of equal 
size. We also evaluated the performance of models using random 

TA B L E  1  Details of hypotheses for landscape effects on gene flow for 1161 grizzly bears (Ursus arctos) in Canada's southern Rocky 
Mountains.

Hypothesis Rationale Variable(s) Prediction Reference

Isolation by distance Null model Pairwise geographic 
distance

Greater geographic distance 
inhibits gene flow

Wright (1943)

Hiding cover Safer to travel and rest in 
closed canopies when 
near humans

Canopy cover Lower canopy cover inhibits gene 
flow

Gibeau et al. (2002)

Human disturbance Bears generally avoid 
and/or experience 
higher mortality in 
areas near people

Built environment (2015) or 
human footprint index 
(2016) or paved roads

Higher human disturbance 
inhibits gene flow

Lamb et al. (2020)

Topography and 
natural barriers

Rugged terrain and 
glaciers may limit 
bear movement

Terrain ruggedness index 
(TRI)

More rugged terrain inhibits gene 
flow

Carnahan 
et al. (2021)

Glacier cover Glaciers inhibit gene flow Proctor et al. (2012)

Forage quality Bears move between 
sites with high-quality 
forage

Enhanced vegetation index 
(EVI)

Lower EVI (lower forage quality) 
inhibits gene flow

Proctor et al. (2015)

Summer precipitation Drier areas (lower forage quality) 
inhibit gene flow

Mowat et al. (2013)
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versus spatial CV when predicting regions of the study area where 
data were completely withheld from model training. To do this, we 
withheld data from regions (separately withholding each spatial 
test cluster in Figure S3), fit the top variable-selected models for 
random and spatial CV at the 440-km scale to the remaining data, 
predicted genetic distances in the withheld datasets using the fitted 
models and calculated RMSE between predicted versus observed 
genetic distances.

2.4.4  |  Variable selection

We implemented forward variable selection with a two-variable 
minimum and used the same 10 spatial clusters in the leave-one-
cluster-out CV procedure as above. This process started by fitting all 
possible models with unique combinations of two environmental co-
variates and evaluating their predictive performance. The algorithm 
then iteratively increased the number of covariates in each model, 
tested for improvements over the existing best models and stopped 
when additional variables no longer improved model performance. 
We used the resulting models to make predictions for the withheld 
test observations and calculated the average (±SD) prediction accu-
racy across all folds. As part of this process, we conducted a random 
grid search to determine the optimal suite of model hyperparam-
eters to achieve the highest predictive accuracy as measured by root 
mean squared error of the test dataset (RMSEtest). GBM hyperparam-
eters included shrinkage, number of trees and minimum number of 
observations per terminal node, while RF hyperparameters included 
the minimum node size and the number of randomly selected predic-
tors at each tree split. We used the optimal hyperparameters to fit 
final straight-line models to the entire dataset and make spatial pre-
dictions. We repeated the variable selection process in subsequent 

LCP models. We calculated the relative influence of selected vari-
ables in GBM models that included all variables using the method 
described in Friedman  (2001). For RF models, we used the Gini 
index of classification as a measure of variable importance (Breiman 
et al., 2017). We explored running separate models for males and 
females but decided to pool the data because spatial autocorrelation 
in genetic distances was nearly identical between sexes (Figure S3). 
Furthermo0re, we assumed that dispersal movements of breeding 
males would spread their alleles to both male and female offspring 
alike, minimizing our ability to map sex-specific genetic connectivity.

2.4.5  |  Model selection

We calculated LCPs using the spatial predictions from our straight-
line models, extracted covariates along these (buffered) paths and 
used the same CV approach described above to identify the top 
LCP model. We then generated spatial predictions from the LCP 
model and repeated the steps of LCP calculation, covariate extrac-
tion and modelling using the previous iteration's resistance surface. 
We used the iteration and associated predicted resistance surface 
with the lowest RMSEtest for connectivity modelling. For each 
spatial scale's best model, we calculated the relative percent dif-
ference between each withheld spatial cluster's RMSEtest and the 
mean RMSEtest across all clusters. We used these values to estimate 
the relative predictive capacity of the models in each spatial region.

2.4.6  |  Maps of predicted genetic connectivity

We created resistant kernels on the final resistance surfaces 
using UNICOR (Landguth et al.,  2012) to map predicted genetic 

F I G U R E  2  Analysis workflow for modelling the influence of landscape characteristics on genetic distance of 1161 grizzly bears (Ursus 
arctos) in Canada's southern Rocky Mountains. The straight-line and least-cost path model steps depict an example where all pairwise 
observations (lines) associated with the pink locations are withheld as test data in a cross-validation fold, while the model is fit using the 
training data from the remaining (black) lines. We followed this workflow for all six spatial scales.
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connectivity. Given an input resistance surface and a set of source 
locations, resistant kernels use a cost–distance algorithm to down-
weight each pixel by the cumulative resistance from source loca-
tions and produce a surface of expected density of dispersing 
animals (Cushman et al.,  2013). A recent simulation study found 
that resistant kernels outperformed Circuitscape when move-
ment was not directed from or to a specific location, as is the 
case with grizzly bears in our study system (Unnithan Kumar & 
Cushman, 2022). We used 2000 source locations distributed ran-
domly throughout the study area.

3  |  RESULTS

3.1  |  Genetic analysis summary

The genotype accumulation curve showed that six microsatellite loci 
were needed to identify 99% of the multilocus grizzly bear geno-
types in our dataset (Figure  S4). All nine microsatellite loci were 
polymorphic. Three loci (G10B, G10H and G10J) were under the null 
expectation of Hardy–Weinberg equilibrium (Figure S5). The deficit 
of heterozygotes in other loci may reflect inbreeding or the pres-
ence of null alleles. Observed frequencies of null alleles ranged from 
0.001 to 0.022 across all nine loci and did not significantly differ from 
zero for five loci (CXX110, G10B, G10H, G10J and MU50). Tests for 
linkage disequilibrium indicated that some loci may be linked, but the 
value was near 0 (overall standardized index of association = 0.009; 
p-value = .001), suggesting rejection of the null hypothesis of ran-
dom mating. The highest standardized index of association between
all pairwise combinations of loci was 0.02, indicating that only a
small proportion variation in one marker is shared with any other
marker. Microsatellite loci with linkage disequilibrium could reflect
subpopulation structure or genetic drift (Slatkin,  2008). A Mantel
test for isolation by distance showed that geographic distances
and genetic distances between grizzly bears were significantly cor-
related (r = .112, p-value = .001). We calculated a cumulative PIDsibs

value of 2.5 × 10−4 across all loci, indicating high statistical power
to differentiate between closely related individuals and a minimal
chance that our results are confounded by multiple individuals hav-
ing matching multilocus genotypes.

3.2  |  Spatial genetic diversity

Genetic distance was positively correlated with geographic dis-
tance throughout the study area (Pearson's correlation across 
all spatial CV test datasets: 120-km scale = .097 ± .029; 440-km 
scale = .099 ± .018; Figure S6). Genetic diversity measured through 
allelic richness generally increased from south to north, peaking 
around the Bow Valley in Banff National Park. Inbreeding was low-
est in the far north-west and relatively similar throughout the re-
mainder of the study area (Figure S7).

3.3  |  Landscape genetics model results

Across all spatial scales, withheld test datasets in the spatial 
cross-validation procedure represented 82.3% ± 8.4 (mean ± SD; 
range = 69.6% – 97.7%) of the total dataset depending on the number 
of sample locations (individual bears) in each spatial cluster. GBM and 
RF models had very similar model performance, as measured by the 
mean RMSEtest across all 10 spatial CV folds (Table S1). However, ac-
cumulated local effects plots depicting average effects of covariates 
on model predictions across the full range of covariate values (Apley 
& Zhu, 2020) showed more stable responses for GBM versus RF in 
portions of covariate ranges with little data (Figure 3; see Figure S8 
for a comparison of GBM and RF predictions). Models incorporat-
ing spatial CV retained fewer variables in the straight-line and LCP 
variable selection processes (GBM spatial: paved roads + canopy 
cover [440-km spatial scale only] + geographic distance; GBM ran-
dom: all six landscape variables + geographic distance), had lower 
RMSE across withheld test data (Table S1) and showed more stable 
covariate responses than those using random CV coupled with vari-
able selection (Figure  S9). Variable-selected models at the 440-m 
scale using spatial CV outperformed those using random CV model 
at predicting genetic distances for all regions when we completely 
withheld data from those regions from model training (spatial CV 
RMSE = .111 ± .003; random CV RMSE = .443 ± .107; Figure S10). We 
report results and display spatial predictions from the GBM models 
with spatial CV hereafter. We report the optimal set of hyperparam-
eters for the top GBM models for each spatial scale in Table S2.

In our final models, geographic distance was the most import-
ant variable across all spatial scales, indicating that IBD explained a 
larger portion of variation in genetic distance for grizzly bears than 
the landscape variables. The 440-km spatial scale model predicted 
that pairwise geographic distances above ~85 km led to increased 
genetic differentiation from the mean and predicted that maxi-
mum genetic differentiation occurs beyond ~120 km (Figure 3). All 
models incorporating paved roads outperformed (lowest average 
RMSEtest across 10 spatial CV folds) those using either the built en-
vironment or human footprint layers. The presence of paved roads 
between pairs of genetic samples was associated with higher pair-
wise genetic distance across all spatial scales, indicating that these 
features consistently impede gene flow. The signal of higher resis-
tance in open canopies and lower resistance in closed canopies 
first appears in the ALE plots at the 200-km spatial scale and its 
magnitude increases at larger spatial scales (Figure 3) along with 
its relative influence in the GBM models that included all variables 
(Figure 4). Canopy cover was retained in variable selection only in 
the full dataset including all pairwise geographic distances (440-
km spatial scale).

At all spatial scales, final variable-selected models outper-
formed models that included all landscape variables using RMSEtest 
as the metric (Figure S11) and explained more variation in genetic 
differentiation than models with only geographic distance across 
all spatial scales (Figure  S12). The first LCP iterations of models 
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with geographic distance and paved roads for the 40-km, 80-km, 
120-km, 200-km and 300-km spatial scales performed better
than the straight-line models at the same spatial scale, so we used
these iterations to predict connectivity via resistant kernels. We
did not see further improvement in RMSEtest values beyond the 
first LCP iteration. The forward variable selection procedure for 
both the straight-line and LCP iterations of these models retained 
only paved roads, along with geographic distance. We used the 
straight-line model as the final model for the full dataset (440 km). 
We found that different buffer widths (0, 1, 3 and 5 km) around 
straight lines and LCPs did not appreciably affect the mean values 
of extracted covariates (Figure S13). A 1 km buffer had the low-
est average RMSEtest across spatial CV folds in the straight-line 

models at the 120 and 440 km scales, so we used this buffer size 
in all subsequent LCP models.

Our GBMs predicted genetic distance best in relatively undis-
turbed southern areas such as the Kootenay Ranges north-west 
of Fernie, BC (spatial cluster 8) and BC's Flathead region (clus-
ter 6; Figures  S3 and S14). Generally, southern and central areas 
with roads (clusters 2, 4, 5, 7 and 9) validated better at finer spa-
tial scales and worse at larger spatial scales, while northern areas 
in Banff National Park (clusters 1 and 3) and BC's Columbia Valley 
near Golden showed the opposite pattern. Model performance was 
poorest near the northern portion of BC's Elk Valley (cluster 2) at 
the four largest spatial scales and in the Columbia Valley at the two 
finest spatial scales.

F I G U R E  3  Accumulated local effect plots showing the predicted change in genetic distance from GBMs at six different spatial scales 
using data from 1161 grizzly bears (Ursus arctos) in Canada's southern Rocky Mountains across a range of values for different landscape 
variables. Values on the y-axis depict the main effect of the variable at a certain value compared to the average predicted genetic distance 
(which is 0) between all pairwise combinations of bears in the entire dataset. Therefore, positive y-axis values indicate higher predicted 
genetic distance than average or more landscape resistance. Note that the y-axis differs across panels. Terrain ruggedness and glaciers were 
not included because they were rarely influential and their effects across spatial scales produced no discernible pattern.
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In the full dataset, low canopy cover increased genetic differen-
tiation up to ~30% cover, while values above ~38% generally facili-
tated higher gene flow (Figure 3). Predicted genetic differentiation 
increased quickly in response to the presence of paved roads, re-
maining stable as the number of roads intersected by the pairwise 
corridor increased. Increasing the mean paved roads value along a 
pairwise corridor from 0 to 1 was roughly equal to adding an ad-
ditional 10–15 km between animals in terms of genetic connectiv-
ity (based on a slope of ~.05 units of predicted genetic distance per 
100 km). The Pearson's correlation between predicted and observed 
genetic distances from our final GBM model ranged from .107 
to  .140 across all spatial scales (Figure S15).

3.3.1  |  Maps of predicted genetic connectivity

Resistant kernels from models with paved roads as the only retained 
landscape variable (40, 80, 120, 200 and 300 km spatial scales) show 
highest predicted genetic connectivity throughout the large swath of 

roadless area (except for a handful of unpaved forestry roads) in the 
central portion of the study area. Predictions from the 440-km spa-
tial scale whose top model also included canopy cover showed stark 
declines in genetic connectivity east of the Rocky Mountain front, 
along the Rocky Mountain Trench from Radium Hot Springs south 
to the USA border, and north of the TransCanada Highway in Banff 
National Park (Figure  5). It also highlighted a roughly 50-km-wide 
pinch point of high connectivity at 49.5° N, near the town of Fernie, 
BC, between the Rocky Mountain Trench to the west and the prai-
ries to the east.

4  |  DISCUSSION

Our large sample size of genotyped bears and broad distribution of 
genetic samples across a large spatial extent allowed us to test how 
the relative influence of different landscape variables on patterns 
of genetic differentiation varies across a gradient of spatial scales. 
This approach provided a more nuanced understanding of factors 

F I G U R E  4  Relative influence of variables predicting pairwise genetic distances from GBMs fit using data from 1161 grizzly bears (Ursus 
arctos) in Canada's southern Rocky Mountains, shown by spatial scale. Note that each panel has different y-axis values. Terrain ruggedness 
and glaciers were not included because they were rarely influential and their relative influence across spatial scales produced no discernible 
pattern.
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affecting grizzly bear dispersal and gene flow than merely consider-
ing a single spatial scale. We found that IBD was the biggest over-
all driver of genetic differentiation in grizzly bears across all spatial 
scales among factors we considered, while human disturbance (rep-
resented by paved roads) was the most important landscape pre-
dictor across all spatial scales. Canopy cover was important at the 
largest spatial scale. Certain landscape characteristics known to 
influence grizzly bear habitat selection, such as vegetation green-
ness, terrain ruggedness, precipitation and glaciers, did not improve 
predictions of genetic differentiation.

Isolation by distance occurs within a continuously distributed 
population when movement of genes is spatially restricted (Hardy 
& Vekemans,  1999) and is an underlying pattern that likely chal-
lenged our ability to detect strong relationships between landscape 
variables and genetic differentiation (Oyler-McCance et al., 2022). 
Our results were consistent with other landscape genetics stud-
ies that showed only incremental improvement in the amount of 
variation explained by final models when compared to a null ex-
pectation of isolation by distance (e.g. Henson et al.,  2021; Zeller 
et al.,  2018). Relatively weak effects of landscape variables com-
pared to geographic distance in grizzly bears may be due to many 
factors, including that grizzly bears are long-lived and wide-ranging 
habitat generalists or that our analyses may reflect historical signa-
tures of genetic connectivity (Epps & Keyghobadi, 2015). Stronger 

relationships between certain landscape variables and genetic dif-
ferentiation may have existed in certain parts of our study area, but 
our use of spatial cross-validation and variable selection indicated 
they did not reflect patterns throughout most of the spatial extent. 
In addition, it is possible that the spatial distribution of our samples 
(e.g. we did not have genetic sample locations west of the Rocky 
Mountain Trench) or only using samples genotyped at nine loci lim-
ited our power to detect certain patterns, that large population sizes 
on opposite sides of highway fractures reduced potential effects 
of genetic drift or that very small number of translocated bears in-
cluded in the dataset weakened the effects certain landscape char-
acteristics on connectivity. Past research found strong evidence 
for IBD in grizzly bears, primarily in relatively undisturbed northern 
areas of their range, although these studies were mostly population 
based and encompassed a larger spatial extent (Paetkau et al., 1997, 
1998; Proctor et al., 2012). For example, Proctor et al. (2012) found 
that the relative influence of IBD on genetic differentiation was 
greater in northern BC than southern BC, and that in the southern 
portion of grizzly bear distribution, the degree of population frag-
mentation depended on the amount of habitat fragmentation from 
human disturbance and, secondarily, the presence of glaciers across 
the continental divide. In south-east BC, south-west AB, northern 
Idaho and north-west Montana, they found strong evidence of frag-
mentation from human disturbance and transportation structures 

F I G U R E  5  Predicted landscape 
resistance (top) and resistant kernels 
(bottom) for grizzly bears (Ursus arctos) 
modelled using 1161 genetic samples 
throughout the southern Canadian Rocky 
Mountains.
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and a relatively small, yet statistically significant effect of IBD. The 
lack of evidence indicating that glaciers increased genetic differen-
tiation in grizzly bears in the southern Canadian Rocky Mountains 
could reflect that glaciers in this region were smaller than those at 
the north end of Proctor et al.'s study area.

At finer spatial scales, the relatively strong effect of geographic 
distance we observed likely reflected movements and mating pat-
terns within and between adjacent home ranges rather than a 
physical inability to disperse. Grizzly bears have overlapping home 
ranges (Mace and Waller,  1997) and are promiscuous (Craighead 
et al., 1995). Dispersal from natal ranges in both sexes often con-
sists of home range shifts and expansions over months to years but 
can also occur in a single discrete event (McLellan & Hovey, 2001; 
Proctor et al., 2004). Although females are typically philopatric, male 
dispersal may be far enough to reduce the probability of inbreeding 
(McLellan & Hovey, 2001). Given these patterns of space use and 
dispersal behaviour, gene flow across the entire study area likely 
could only occur across multiple generations.

Outside of certain forms of human disturbance, there may be 
few landscape characteristics that inhibit grizzly bear gene flow 
across most spatial scales in our study area. Human disturbance was 
the only important landscape predictor of genetic differentiation 
across all spatial scales except at the broadest scale when canopy 
cover was also retained in the variable selection procedure. The 
presence of roads, especially high-traffic roads, has been shown to 
alter their habitat selection, impede their movements and increase 
their mortality (Ciarniello et al., 2007; Nielsen et al., 2004; Northrup 
et al., 2012). Our results indicate that these effects persist out to the 
broadest spatial scale in our study area and therefore limit landscape 
connectivity across spatial scales and point to the benefits of miti-
gating road barriers to improve connectivity at all scales.

Human development may inhibit grizzly bear movement and 
gene flow through some combination of behavioural avoidance and 
increased mortality (Lamb et al., 2020; Trombulak & Frissell, 2000). 
Humans are the main source of grizzly bear mortality (>75%) in the 
southern portion of their range (McLellan et al., 1999). Grizzly bears 
tailor their habitat use in space and time to avoid the risks posed 
by humans (e.g. Gibeau et al.,  2002, Roever et al.,  2010, Proctor 
et al., 2019; but see Munro et al., 2006), shaping the landscape of 
connectivity and survival for this species. The effects of human dis-
turbance on grizzly bear behaviour, movement and survival culmi-
nate to modify their genetic connectivity in southern Canada.

When we considered the entire dataset, which included pairwise 
distances out to 440 km, areas with low canopy cover inhibited gene 
flow. This pattern was also evident at the 200-km and 300-km spatial 
scales, but canopy cover was not retained during variable selection 
in those models. Grizzly bears dispersing relatively short distances 
may cross larger expanses of open areas such as valley bottoms and 
agricultural areas by moving quickly to minimize risk, travelling pri-
marily at night (Lamb et al., 2020) or moving through any existing 
forested corridors. However, as the spatial (and temporal) scale in-
creases and in the rare instances of longer, more directed disper-
sal, we postulate that the cumulative risk associated with crossing 

more and more of these open areas may inhibit their connectivity. At 
this broadest spatial scale, the canopy cover variable may have best 
captured relatively poor grizzly bear habitats, such as human settle-
ments, agricultural areas, grasslands and prairies, that collectively 
inhibit long-distance dispersal. High canopy cover areas within our 
study extent offer cover to help minimize mortality risk yet are often 
near-edge habitats that provide access to foraging resources.

Our map of predicted genetic connectivity at the largest spatial 
scale highlighted an important north–south movement corridor near 
Fernie, BC, where the heavily forested and relatively undisturbed 
portion of the Rocky Mountains is narrowest. Dispersing bears in 
this area may be funnelled between the human disturbances in the 
area (open pit coal mines, cities and expanding rural settlements) 
and the open canopies and human settlement of the Kootenay 
River Valley to the west and the foothills and prairies on the eastern 
slopes of mountains in AB. These results underscore the importance 
of BC's Elk Valley as a critical corridor, and pinch point, along the 
Rocky Mountains. They also provide additional evidence supporting 
ongoing work to create crossing structures along a nearby east–west 
stretch of Highway 3 between Sparwood, BC, and Lundbreck, AB 
(Brennan et al., 2022).

Because dispersal directly promotes population connectivity, 
modelling connectivity using movement data from individual animals 
is attractive. However, this type of dispersal data typically suffers 
from very low sample sizes due to the logistical difficulties of tracking 
animals during this infrequent behaviour (Fagan & Calabrese, 2006). 
Genetic data can serve as a landscape-scale proxy for dispersal data 
and highlight connectivity corridors at relatively broad spatiotem-
poral scales, but they are less appropriate for pinpointing fine-scale 
linkage areas such as highway crossings than maps derived from de-
tailed tracking data, which for many species (such as grizzly bears) 
primarily consists of movements within home ranges. In addition, 
genetic data can be collected non-invasively and across massive 
spatial extents (Kendall et al., 2009; Lamb et al., 2019; Morehouse 
& Boyce, 2016). Differences between maps from genetic-based and 
movement-based models can highlight areas where dispersal does 
not result in successful breeding due to mortality. Our maps indicate 
that major roads do increase genetic differentiation but are not com-
plete barriers to gene flow (Proctor et al., 2012), a result consistent 
with previous work in Banff National Park showing that grizzly bear 
gene flow does occur across the Trans-Canada Highway with the 
help of wildlife crossing structures (Sawaya et al., 2014). Past studies 
confirm that collared grizzly bears do cross highways in our study 
area (Graham et al., 2010; Proctor et al., 2012), although crossing fre-
quency depends on time of day and vehicle traffic volume (Chruszcz 
et al., 2003; Waller & Servheen, 2005). It is well documented that 
grizzly bear mortality is relatively high near people due to conflicts 
at residences and collisions along highways and railways (e.g. Nielsen 
et al., 2004; Proctor et al., 2019). Genetic connectivity may thus be 
impeded due to the combined effect of bears behaviourally avoiding 
human-dominated areas and dispersing bears dying more in these 
areas (Lamb et al., 2017). However, management activities that re-
duce human–bear conflicts may increase connectivity across areas 
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that would otherwise function as fractures between populations 
(Proctor et al., 2018).

Our modelling approach, which builds upon methods used in 
several previous studies (Bouyer et al.,  2015; Pless et al.,  2021; 
van Strien et al., 2012), can be used to model genetic connectivity 
in other continuously distributed species and offers several advan-
tages over existing landscape genetics frameworks. First, modelling 
genetic distance directly from raw landscape covariates eliminated 
subjectivity in creating an initial resistance surface for calculation 
of effective distances. Second, our use of spatial CV and variable 
selection helped account for spatial autocorrelation and strength-
ened our inference by minimizing overfitting and removing variables 
that failed to improve model performance throughout the study area 
(Ploton et al., 2020). Using RMSEtest values alone, GBM models fit 
with random CV appeared to outperform those fit using spatial CV 
(Table S1). However, ALE predictions from these models (Figure S9) 
highlighted noise and random fluctuations in the training data, illus-
trating a common problem with machine learning algorithms that 
use random CV folds with spatial data (Meyer et al., 2019). The sim-
ilarity in predictor variable space between training and test data-
sets within random CV folds likely resulted in final models that were 
better able to reproduce the exact sampling data than ones fit using 
spatial CV but were not generalizable to the entire study area. Not 
surprisingly, the spatial CV models easily outperformed the top ran-
dom CV models at predicting genetic distances involving samples 
from every region when we completely withheld data from that re-
gion during model training. Spatial CV should therefore improve any 
future predictions in regions where we lacked genetic samples, such 
as the Purcell Mountains west of the Rocky Mountain trench. Spatial 
CV also ensured that all pairwise observations involving a genetic 
location from a withheld spatial cluster appeared in the test dataset 
only (i.e. not in the training dataset) within each CV fold. Although 
this approach did not explicitly account for the non-independence 
in our data, preventing pairwise observations from crossing this 
‘training-test divide’ helps avoid inflated performance metrics that 
are common in machine learning models fit data with strong depen-
dence (Whalen et al., 2022)

Third, machine learning algorithms allowed us to quantify 
non-linear responses to landscape characteristics without using 
predefined transformations (e.g. log and quadratic). For example, 
response curves depicting the effects of canopy cover and human 
disturbance on grizzly bear genetic differentiation included sharp 
changes and thresholds that linear modelling frameworks could not 
accurately characterize. Machine learning algorithms have demon-
strated utility in large-scale ecological mapping analyses such as 
species distribution models (Elith and Leathwick 2009) and resource 
selection analyses (Shoemaker et al., 2018), yet they have seen lim-
ited use in the field of landscape genetics (but see Murphy et al. 
2010b, Bishop et al., 2021, Pless et al., 2021, Kittlein et al. 2022).

Ensuring connectivity exists for large carnivores is a major 
conservation challenge because these species inhabit large spatial 
extents at relatively low densities, exhibit long-distance disper-
sal events, are sensitive to human disturbance and pose real and 

perceived threats to humans (Bartoń et al., 2019; Lamb et al., 2020). 
Future research comparing connectivity maps produced using ge-
netic data with those using movement and demographic data will 
further clarify and prioritize management targets for grizzly bears in 
the region. Our work highlights the utility of cross-jurisdictional col-
laboration to gain insight into factors driving genetic connectivity for 
continuously distributed populations in ecologically heterogeneous 
and human-dominated landscapes. It also highlights the importance 
of incorporating spatial CV in landscape genetics analyses across all 
taxa, especially when making predictions over large spatial extents. 
Finally, we gained additional ecological insights by considering land-
scape resistance and connectivity at more than one spatial scale and 
believe there is exciting potential for incorporating multiple spatial 
scales into future landscape genetics studies.
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